
S-C Macro
Assembler

VERSION 2.0

S-C Software Corporation
2331 Gus Thomasson, Suite 125
P.O. Box 280300
Dallas, Texas 75228
(214) 324-2050

S-C Macro Assembler Version 2.0

Here is your copy of the latest upgrade to the s-c Macro
Assembler. The most important new feature of Version 2.0 is
the capability of assembling the enhanced instruction sets of
the 65C02 (both standard and Rockwell editions), 65802, and
65816 microprocessors. Next in importance is the revision of
I/O handling to make it easier for you to customize the I/O
driver for any sort of 80-column card you may have. 80-column
drivers are included for the //e, //c, Videx, and STB-80
systems. In addition, Version 2. 0 also includes many small
enhancements which will be detailed herein. This upgrade
packet also describes the additional features added with
versions 1.1 and 1.2.

The disk contains two versions of the S-C Macro Assembler: one
which loads at $1000, and another which loads at $D000. These
versions are configured with a 40~column driver which will work
in any Apple II series computer having at least 48K ($1000
version) or 64K ($D000 version) of RAM. I recommend, although
it is not absolutely necessary, that Applesoft be resident in
ROM on the motherboard.

The HELLO program checks to see whether you have an Apple //e,
//c , or older version. If it is not a //e or //c, HELLO next
presents a menu for you to choose a 40-column, Videx, or STB-80
version. Following that choice, you are presented with a menu
to select the $1000 or $D000 version of the assembler. With
all choices made, HELLO loads the selected version of the
assembler, and then BLOADs the selected driver (if any). The
$D000 version is more complicated to load, so it is controlled
by an EXEC file.

As is true of all s-c products, the Version 2.0 disk is not
copy-protected in any way. Make a backup copy now, and store
the original in a safe place. The standard Apple COPYA is
included on our release disk for your convenience. You may
also use the FID program to make copies of individual files on
your working disks.

You will probably wish to move the version of the assembler you
usually use, with your favorite driver and EXEC loader, to your
working disks. Do it!

It is also possible and advantageous to burn the assembler into
EPROM. Some owners have burned it into 2716's tor installation
into an Apple firmware card~ others have burned it into 2764's
or a 27128 to plug into the SCRG quikLoader. We have done the
latter too, and you may purchase a 27128 from us with version
2.0 in it. Call for details.

- 1 -

\

I

DOS Version

The release disk contains a slightly modified version of DOS
3.3. It is not the latest version of DOS 3.3 as distributed by
Apple (which included some "final" patches for the APPEND
command). Our version includes instead some patches which
speed up the LOAD, BLOAD, and RUN commands tremendously. Of
course, the s-c Macro Assembler will run with any version of
Apple DOS 3.3, with or without our patches. However, it may
not work with some of the enhanced DOS products. You should
have no trouble with ProntoDOS, DavidDOS, or The DOS Enhancer;
but some other brands, including DiversiDOS, are known to
conflict with our use of DOS when you use the .TF assembler
directive.

Version 2.0 is compatible with the Corvus hard disk system; it
has not been tested with other brands. If there is a problem
with other brands, it will occur during assembly of programs
which use both the .IN and .TF directives with the files
residing in different volumes on the hard disk.

I/0 Drivers

The copies of the Version 2.0 on the release disk include
40-column display drivers. The release disk also includes the
source and object code for three SO-column drivers. The HELLO
program will automatically BLOAD the SO-column driver of your
choice. They are up to 244 bytes long, and loaa at either
$3700 with the $1000-based assembler or $F700 with the
$0000-based assembler.

Once you have the assembler in memory with your selected
driver, you could BSAVE the composite as your own private
version. Use your own file name, an address of $1000 or $DOOO,
and a length of $27F4.

I have attempted to make operation identical regardless of
which driver is in place. Nevertheless, there are still some
differences. The constraints of 244 bytes per driver,
sometimes "crazy" firmware, and the wide variety of features
have meant compromises. Since you will probably settle on JUSt
one version, the minor differences between it and the ones you
do not use should cause no problems.

1. //e-//c Driver:

The best version is the //e version, running in either a //c or
in a //e with the new CDEF ROM set (copyright 19S4). All
features work well with this configuration. When the assembler
with this driver is loaded, the screen stays in whatever mode
was already set. If you were in 40-column mode, it stays in
40-column; if in SO, it stays it SO. Once in the assembler,
you can go to SO-columns by typing PRi3, or back to 40-columns
by hitting ctrl-RESET. In a //e with the older firmware, you
can also revert to 40-columns by typing esc-crtl-Q. In a //c

- 2 -

or a //e with the new firmware, esc-ctrl-Q does nothing;
however , you can revert to 40-columns by typing PRIO.

In a //e or //c, you may leave the assembler by typing the FP
command . If you are using the $DOOO-based version, you may
return to the assembler with the INT command. (The INT command
cold starts the assembler, just as it would cold-start Integer
BASIC if that language were loaded into the $0000 area. This t'
means any source program which may have been in memory earlier l
is cleared .)

If you wish to engage a printer, first get into the 40-column
mode. Then type PRil (or PRI and whatever slot your printer
card is in). After the printing is complete, you may return to
80-column mode. Usually, SO-column screen display and printer
interfaces should not be mixed.

There is one thorny configuration that you may possibly have:
The older //e firmware with the MouseText character generator
ROM. With this configuration, inverse capital letters appear
on the screen as MouseText icons. The alternative is to turn
off the ALTCHRSET mode, in which case inverse letters appear as
flashing letters. If this is your configuration, hopefully you
will upgrade your firmware as soon as Apple's upgrade kit is
available.

The older //e firmware handled the •escape • key in a very
difficult manner, so that I cannot support my own escape
commands within the driver. Therefore the esc"L, esc-s, and
esc-U commands do not function with the older firmware.
However, you can get the same results by using the open-apple t
key instead of the escape key with these three commands.

The DELETE key on the Apple //e and //c generates the code $FF
when it is pressed. This code is interpretea as a backspace,
the same as the left arrow ($08).

2. STB-80 Driver:

The STB-80 was one of the best SO-column cards on the market.
STB systems no longer makes it though, because they have opted
for the IBM marketplace. I have one, and so do many of you, so
I wrote a driver for it.

When you l oad the assembler with the STB-80 driver, it
automatically switches to SO-column mode. It is not possible
to switch back to 40-column mode in the assembler. To leave
the assembler, type the FP command and then hit RESET or
ctrl-RESET.

If you wish to do some printing, turn on your printer with the
PRislot command. The cursor will remain active on the screen,
but you will see no characters as you type. The printer will
remain connected until you use the NEW command, finish an
assembly, or get a syntax error in a command line. To
dis-connect on purpose without assembling or erasing your
source program, purposely generate a syntax error by typing •x•
and a RETURN.

- 3 -

3. Videx Driver:

The Videx card that I have is version 2.4, with the sottswitch.
The firmware is such that to offer the same features you are
used to in the s-c 40-column version I have to directly call
two internal firmware routines, and to directly program the
cursor generator on the Videx board. This means that my driver
may not work with your Videx card, if your card has different
firmware at these two addresses. It also means that my Videx
driver will almost certainly not function with so-called
"Videx-compatible" cards.

The two internal routines are CHRGET (at $C39E in version 2.4)
and NTSHFT (at $C870 in version 2.4). If you find the
corresponding routines in your Videx firmware, you should be
able to substitute the addresses in my driver and reassemble
it. If you need assistance, call us.

Printer operation and leaving the assembler are the same as
with the STB-80 card. Of course, if you have no •soft switch"
with your Videx card, you will need to re-enter SO-column mode
to get any display after leaving the assembler.

4. Writing your own driver:

You may customize the existing drivers, or write your own. All
of the source code for my three drivers is on the release disk,
well-commented. Follow the same outline, and you will succeed.
Assemble two versions, one with LOCATION .EQ $1000 and the
other with LOCATION .EQ $0000.

Remember that the driver should be no longer than 244 bytes
($3700-37F3 and $F700-F7F3). The last 12 bytes in the driver
page are reserved for use by the Laumer Research Full Screen
Editor. Of course, if you are quite sure you will never use
the Full Screen Editor, then you could use these additional 12
bytes in your driver.

If you have any questions about drivers, call us at (214)
324-2050. When you finish one for another SO-column cara or
perhaps an Apple clone, you might consider sending it to us for
others who might have the same needs.

Enhancements at the Editor Level

l. Shorthand Features:

Previous versions of the s-c Macro Assembler supported three
"shorthand" features: ctrl-E as a handy synonym for "EDIT",
esc-L in column 1 to trace over a file name and automatically
LOAD it from disk, and esc-L after a line number to generate a
star-dash line.

- 4 -

Version 2.0 continues to support those, and adds three more.
Ctrl-C in column 1 will spell out "CATALOG" and wait for you to
type RETURN, or append slot and drive data and then type
RETURN.

Esc-s in column 1 is an Automatic-SAVE command. It depends for
operation on your cooperation: you must place a special
comment line somewhere near the beginning of your source .~
program (as one of the first ten lines). This comment line has
the form:

1000 *HHHHHHSAVE filename

The "H" characters are actually ctrl-H characters, which you
type in by a series of six ctrl-O,ctrl-H pairs. As you are
typing they will appear in inverse on the screen. If you LIST
the line, the ctrl-H characters will make the "SAVE filename"
part print over the top of the line number, so all y.ou will see
is:

SAVE filename

When you type esc-s, the first ten lines will be scanned
looking for a comment line with a letter "S" following the "*"
(any arbitrary characters may separate the"*" and "S"). If
such a line is found, it will be listed on the screen. Then
the line as it appears on the screen will be picked up ana
placed in the input buffer, and the cursor placed at the end of
the line. You may then type RETURN to SAVE the file. Or you
may append slot and drive data and then type RETURN. Or you my
type ctrl-X to abort the command.

2. Enhancements to the COPY Command:

We have slightly modified the way the COPY command works. In
prior versions a range of lines copied retained the original
line numbers, even though that meant you had out of sequence
numbers in memory. The new version generates a series of new
line numbers for the copied lines. The new copy of the lines
will all have the same line number as the target line of the
COPY command. For example, COPY 1200,1240,1520 woula copy
lines 1200-1240 just before line 1520, and assign all the new
lines the number 1520.

The new version also allows the option of deleting the original
lines, turning COPY into a move command. After the lines are
copied, the question "DELETE ORIGINAL?" is asked; a ")!"
response will cause the original lines to be deleted. Any
other response will cause the original lines to remain.

After a COPY operation is complete, you should RENUMBER the
source lines. However, it need not be done immediately. There
are cases when it is advantageous to postpone the RENUMBERing a
short while.

- 5 -

)

•

For example, suppose I want to copy three separate blocks so
that they end up one after the other, all before a given spot
in the source code •••

3.

:COPY 3000,3150,4900
DELETE ORIGINAL? Y
:COPY 2700,2720,4900
DELETE ORIGINAL? Y
:COPY 6750,7040,4900
DELETE ORIGINAL? Y
:REN

Case Toggle

If you are using the 40-column version, or either Videx or
STB-80 versions, you can turn the upper-case lock off and on by
typing ctrl-S. On the //e or //c, use the case lock button on
the keyboard.

4. Linkage to the Full Screen Editor:

we have simplified the linkage to the Laumer Research Full
Screen Editor. we built in a trap for the "/" commana
character which switches you over to the FSE, so that the patch
code which must be loaded at the end of page $F7 is much
shorter. The last 12 bytes only of that page are now used for
the patch, from $F7F4-$F7FF. (The lower 244 bytes of that page
are used for the I/0 driver.)

Two files are included on our release disk which when EXECed
will load in the FSE and patch the assembler for its use:
"LOADER FSE" and "LOADER FSE & ASM".

5. New User Vectors:

we added several new user vectors for your own enhancements.
These are in addition to the PRT and USR commands already
included in previous versions.

In case you would like to add another escape command, we left
an opening in the table. Esc-U (or open-apple-U on //e)
vectors to a JMP instruction at SDOOC. Change the jump aadress
so that it jumps to your own escape handler code, and you will
gain control anytime esc-U is typed during line input.
Terminate your escape handler code with an RTS opcode. When
you get control, the line as it has been typed so far is in the
buffer starting at $200, and the number of characters so far is
in the X-register.

We also added a single character command similar to the "&" in
Applesoft. If you type a "." as the first character of a
command line, then when you type the RETURN key control will
branch to a vector at SDOOF. The instruction at $DOOF is a JMP
instruction. Insert your own address into that instruction,
and you can decode the entire line in whatever manner you wish.

Because of the addition of these vectors, some other vectors
and customization data items have moved. Here is the latest
table of vectors and parameters:

- 6

$1000 $0000
Based Based

$1000
$1003
$1006
$1009
$100C
$100F
$1012
$1015
$1018
$1019
$101E
$101F
$1020
'$1021
$1024
$1026
$1028
$1029

$0000
$0003
$0006
$0009
$DOOC
$DOOF
$0012
$0015
$0018
$0019
$DOlE
$001F
$D020
$0021
$0024
$0026
$0028
$0029

Description Contents

Hard Entry JMP HARD.INIT
Soft Entry JMP SOFT
USR Vector JMP SOFT
PRT Vector JMP SOFT
Esc-U Vector JMP ROL.ERR
M,w Vector JMP SOFT
Object Vector JMP STORE.OBJECT.BYTE
.US Vector JMP COMMENT
Tab Character .DA 1$89 (Ctrl-I)
Tab Settings .DA il4,118,12T,I32,10
Esc-L Char .AS -1-1 (star-dash)
Compression Limit .DA 14
Wild Card Char .DA 1$17 (Ctrl-W)
Char Out JMP MON.COUT ($FDED)
Low Mem Unprotect .DA $0000
High Mem Unprotect.DA $0000
LOA I Opcode .HS A9
Starting page for symbol table ($38 or $10)

6, New Insert Character for EDIT:

When editing a line with the EDIT command, the insert mode is
now invoked by ctrl-A (mnemonic for ADD), rather than ctrl-I.
This was done because the TAB key on the //e and //c produces a
ctrl-I code. We wanted TAB to mean tab! The TAB or ctrl-I
keys now perform a clear-to-tab function when operating unoer
the EDIT command. Skip-to-tab is still invoked by ctrl-T.

7. Full 5-digit Line Numbers:

Line numbers may now have up to five digits, in the range from
0 through 65535. Versions prior to 1.1 restricted line numbers
to the range 0-9999 . If the numbers are less than 10000, they
will print as four-digit numbers with leading zeroes if
necessary. Larger numbers, of course, will print as five-digit
numbers.

8. Improved HIDE Operation:

The HIDE command now performs an automatic MERGE before hiding
the current section of source code. This allows a string of
LOAD filenamel, HIDE, LOAD filename 2, HIDE, ••• MERGE commands
to merge a lot of source files together.

9. To wake room for all these enhancements, cassette tape LOAD
and SAVE commands have now been removed. We bet haroly a soul
will miss them 1

- 7 -

Enhancements at the Assembler Level

1. .OP Directive:

The .OP directive is used to enable the assembly of a
particular instruction set. I suppose "OP" could stand for
either· "OPcodes• or •oPtion". The normal default case is the
instruction set of the plain unadorned 6502.

If you wish to assemble Sweet-16 opcodes, you now need to tell
the assembler so in advance by a line like:

1000 .OP SW16

This has the advantage of catching those cases in which a
typing error such as BMl instead of BMI is made. In previous
versions of the assembler, the Sweet-16 BMl opcode would be
assembled, with no error message, even though you expected the
6502 BMI opcode. In version 2.0 you would not have enabled
Sweet-16 assembly, so the typing error would be caught.

Here are all the possible values which may be used with the .OP
directive:

.OP 6502

.OP SW16

.OP 65C02

.uP 65R02

.OP 65802

.OP 65816

The .OP processor actually only scans for several key
characters. If none of them are found, the 6502 mode is set.
If •sa is found, Sweet-16 mode is set. If "c• is found, the
normal 65C02 mode is set. If "R• is founo, the Rockwell
extended 65C02 mode is set. If "8• is found, the 65802/65816
mode is set.

Two aliases are included in the opcode table, by popular
demand. "BGE" is an alias for "BCS", since •acs" is often used
to mean "Branch if Greater than or Equal•. Likewise, "BLT" is
and alias for •sec•, meaning •sranch if Less Than".

All of the modes include as a subset the standard 6502 opcodes
and addressing modes. The following tables indicate which
opcodes and addressing modes are added with each .OP selection.

- 8 -

·-'1- -- -

65C02 Mode -- adds the following new opcodes with the
addressing modes shown:

BRA reladdr Branch Always

PHX Push x-register
PHY Push Y-register
PLX Pull x-register
PLY Pull Y-register

STZ zp Store Zero
STZ zp,X Store Zero
STZ abs Store Zero
STZ abs,x Store Zero

TRB zp Test and Reset Bits
TSB zp Test and Set Bits

The 65C02 mode also adds the following addressing modes to 6502
opcodes:

BIT tval8 Test Bits
BIT zp,X Test Bits
BIT abs,X Test Bits
INC Increment A-register
DEC Decrement A-register
JMP (abs,X) Jump indexed indirect

ADC (zp) Direct Indirect mode
(also for AND, CMP, EOR, LOA, ORA, SBC, and STA)

65R02 Mode -- includes all of the 65C02 opcodes and aadressing
modes, and adds four more opcodes:

SMB bit,zp
RMB bit,zp
BBR bit,zp,reladdr
BBS bit,zp,reladdr

These actually use up 32 opcode values, becauae the bit I (0-7)
becomes part of the opcode byte.

Abbreviations: reladdr ••• 8-bit relative address
zp •••••••• 8-bit address in page zero
abs ••••••• l6-bit addreas
val8 ••.••• 8-bit immediate value
bit ••••••• 3-bit bit number, 0-7

- 9 -

)

)

.- .. --___

65802/65816 Mode -- includes all of the 65C02 opcodes and
addressing modes, and adds the following new opcodes with the
addressing modes shown:

PEA vall6
PEI val8
PER longreladdr
BRL longreladdr
JML (abs)

Push 16-bit value on stack
Push 8-bit value on stack
Push 16-bit relative address
Branch Always, 16-bit reladdr
Jump Long Absolute Indirect

JSL longabs Jump Long Absolute
RTL Long Return from Subroutine

MVP Iongabs,longabs Block Move Up
MVN longabs,longabs Block Move Down

PHB Push Data Bank Register
PLB Pull Data Bank Register
PHD Push D-register
PLD Pull D-register
PHK Push Program Bank Register

REP tval8 Reset Status Bits
SEP ival8 Set Status Bits

TCD Transfer c to D
TDC Transfer D to c
TCS Transfer c to s
TSC Transfer s to c
TXY Transfer X to y
TYX Transfer y to X
XBA Exchange B and A
XCE Exchange Carry-bit with Emulation-Bit
COP Co-Processor Interrupt
STP Stop Clock until RESET
WAI Stop Clock until Ready plus NMI or IRQ
WDM No-operation, reserved for future systems

Abbreviations: val8 ••••••••.. 8-bit .immediate value
vall6 ••..••••• 16-bit immediate value
longreladdr ••• l6-bit relative address
abs •••.••••••• l6-bit address
longabs •••.••• 24-bit address

- 10 -

The 65802/65816 mode also adds the following new addressing
modes to 6502 opcodes:

To the ADC, AND, CMP, EOR, LOA, ORA, SSC, and STA
opcodes, four new modes:

ADC val8,S
ADC (val8,S) ,y
ADC > (zp)
ADC >(zp),Y

Stack Relative
Stack Relative Indirect Indexed
Direct Indirect Long
Indirect Indexed Long

To the ADC, AND, CMP, EOR, LOA, ORA, and SSC opcodes,
a new 16-bit immediate mode. This is not a true mode,
because the opcodes values are the same as the 8-bit
immediate opcodes. At execution time a P-register
bit determines whether one or two bytes of data
will be used. The syntax in the s-c Macro Assembler
for 8- or 16-bit immediate operands is as follows:

8-bit Immediate
LDA lexpr
LDA /expr
LDA ~expr

16-bit Immediate
LDA llexpr
LOA //expr
LOA ~~expr

low 8-bits
mid 8-bits of 24-bits
high 8-bits of 24-bits

low 16-bits
mid 16-bits of 32-bits
high 16-bits of 32-bits

We decided to use the double-delimiter to indicate
16-bit immediate values so that it would be reaaily
apparent upon reading your assembly source code
what you intended. An alternative we considered
was to use a new directive to tell the dSSembler
whether to assemble 8- or 16-bit immediate values.
We thought that would lead to more programming
bugs as the simple reading of a source line woula
not indicate which mode was being used.

Note that you really only need the I and It modes,
because you can get the others by dividing the
expression by 256 one or more times.

JMP longabs
JSR (abs,X)

Jump with 24-bit address
Jump to Subroutine Indexed Indirect

[Strictly speaking, the 65802 level probably should not allow
the long addressing modes. However, Version 2.0 makes no
distinction between 65802 and 65816 at this time.

Abbreviations: val8 •••••• 8-bit immediate value
zp •••••••• 8-bit address
expr • ••••• 32-bit expression
abs ••••••• l6-bit address
longabs ... 24-bit address

- 11 -

)

2. Expressions:

In previous versions of the s-c assemblers the operand
expressions were limited to 16-bits. Since the 65816 uses a
24-bit address bus, this is no longer adequate. We decided to
change to 32-bit expressions, even though 24 might have been
enough • . Up to 24 bits are meaningful in 65816 instructions,
and up to 32 bits are meaningful in .DA directives.

The .DA directive already allowed you to generate either 8-bit
or 16-bit data values. We have now added the capability of
generating 24-bit and 32-bit values, using this syntax:

.DA texpr

.DA /expr

.DA expr

.DA expr/256

.DA expr/65536

.DA <expr

.DA <expr/256

.DA >expr

8-bits (low-order byte)
8-bits (next-to-lowest byte)

16-bits (low-order 16 bits)
16-bits (middle 16 bits of 32)
16-bits (high-order 16 bits)

24-bits (low-order 24 bits)
24-bits (high-order 24 bits)

32-bits

In all the multiple byte cases, the bytes will be stored
highest-byte first; this is the normal 6502 way.

Of course, you may put more than one value on a single .DA
line, connected by commas, and you may mix sizes on the line.

1010 ·--------------------------------0800- 78 1020 BYTE .DA 1$12345678 LOW BYTE
0801- 56 1030 .DA /$12345678 2ND BYTE
0802- 56 1040 .DA i$12345678/256 2ND BYTE
0803- 34 1050 .DA 1$12345678/65536 3RD BYTE
0804- 12 1060 .DA /$1234 567 8/6553 6 4TH BYTE
0805- 12 1070 .DA ·~12345678/65536/256 4TH BYTE

1080 ·--------------------------------0806- 78 56 1090 WORD16 .DA $12345678 LOW
0808- 56 34 llOO .DA $12345678/256 MIDDLE
080A- 34 12 1110 .DA $12345678/65536 HIGH

1120 ·--------------------------------OBOC- 78 56 34 1130 WORD24 .DA <$12345678 LOW
080F- 56 34 12 1140 .DA <$1234567 8/256 HIGH

1150 ·--------------------------------0812- 78 56 34
0815- 12 1160 WORD32 .DA >$12345678

1170 ·--------------------------------0816- 11 33 22
0819- 66 55 44
081C- AA 99 88
081F- 77 1180 .DA i$11,$2233,<$445566,>$778899AA

1190 ·--------------------------------

- 12 -

J

I

We also added three operators to those you may use in operand
expressions. Boolean operations of logical product (AND), or
(OR), and exclusive-or (EOR) are now available. Use the
following operator characters:

AND &
OR I or

EOR

Here are some examples:

$12345678&$FOFOFOFO is $10305070
$12345678I$FOFOFOFO is $F2F4F6F8
$12345678~$FOFOFOFO is $E2C4A688

Binary constants are now supported. The syntax is
"%11000011101" (up to 32 bits). To make it easier to read the
binary constants, you may include optional periods as visual
separators between the binary digits or groups of digits. Here
are some examples:

0800- AD 08 01
0803- 29 7F
0805- 01 80
0807- 34 12

1000
1010
1020
1030

LOA %1 .0000.1000
AND t%0lllllll
.DA %1000000000000001
.DA %0001.0010.0010.0100

ASCII literals with the high-bit set are now allowed, and are
signified with the quotation mark. Note that a trailing
quotation mark is optional, just as is a trailing apostrophe
with the low-bit-zero ASCII literals.

0800- A9 58
0802- A9 08
0804- Cl 42 E3

1000
1010
1020

LOA i'X
LOA t"X
.DA t•A",t'B',t"c•

3. Force zero page, absolute, or long modes:

The 6502 assembly language has several ambiguous modes. For
example,

1000 VALUE .EQ $05
1010 LOA VALUE

could be assembled in two different ways, both perfectly valid.
Since VALUE is in page zero, "AS 05" is one possiole way to
assemble it, However, "AD 05 00" is also pettectly valid. The
assembler normally decides which mode it can uso, In this case
the assembler would use the zero page form, uAs os~. If you
want to force the assembler to use the longer form, you could
do so by putting the .EQ line later in the progr~o. That
works, but it is not a desirable technique.

Borrowing syntax from some other assemblers, I have added tne
capability to force the mode you desire. If you write a ">"
character before the operand, the long mode will be forced.
You can also use "<" to force the zero page mode. If you are
writing code which will be assembled to execute inside page
zero, you may find cases in which you need the "<" capability.

13 -

)

... -.. --- -

- --

Big Mac, Mer lin, and some other assemblers share this syntax.
For some reason Apple's ToolKit uses the ">" and .. < .. in exactly
the opposite sense.

The long mode may be forced by prefixing ">>" to the operand.
Here are some examples:

1000 .OP 65816
1010 *---------------------------

000800- AS 03 1030 LOA 3
000802- AD 03 00 1040 LOA >3
000805- AF 03 00 00 1050 LOA »3
000809- 4C 03 00 1060 JMP 3
ooo8oc- sc 03 00 00 1070 JMP »3
000810- AD 34 12 1080 LOA $1234
000813- AS 34 1090 LOA <$1234
000815- AF 56 34 12 llOO LOA $123456
000819- AD 34 12 lllO LDA >$123456
00081C- SC 56 34 12 ll20 JMP $123456
000820- 4C 34 12 1130 JMP >$123456

4. .BS with Fill Byte:

In previous versions of the assembler, the .BS directive wrote
zeroes on the target file. If object code was stored directly
in RAM, no fill value at all was stored. In the new version,
zeroes will be stored in RAM. For example, •.ss s• is
equivalent to ".HS 0000000000".

We have also added an optional parameter so that you can
specify what the fill byte will be. Here are the syntax and
some examples :

.BS count,value
1000 SYMBOL .BS 4,$AO 4-byte variable,

filled with SAO bytes
1010 VALUJ:; .BS 2,$FF 2-byte variable,

filled with $FF bytes
1020 BUFFER .BS 32 32-byte variable,

filled with $00 bytes

A RANGE ERROR will be generated if the number of bytes is
negative, or greater than 32767.

5. Object Code Emission Vector:

A new user vector has been added which allows you to gain
control over each byte of the object code as it is emitted from
pass two of the assembler. Ordinarily the ObJect code would be
either stored at the target address in RAM or written on the
target file. With this vector you may write a program to do
other things with the object code. For example, one customer
uses this vector to funnel code through a serial port to
another computer. The vector is at $1012 or $0012, depending
on where you have loaded the assembler. It consists normally
of "JMP STORE.OBJECT.BYTE"; put your own address into the
instruction, and you have total control.

- 14 -

6. Optional Separators in .HS Directive:

The .HS directive now allows optional ","characters oefore and
after each pair of hex digits. This makes it easier to count
the bytes, and to align the bytes with comments on the lines
above or below the .HS lines.

7. Deeper .DO Nests:

. DO -- .FIN sections can now be nested to 63 levels, rather
than the limit of 8 established in Version 1.0.

8. Additonal Comment Character:

Comment lines may begin with either "*" or ";k. This increases
compatiblity with other brands of assemblers. Some people
prefer "* ", some prefer "; ". Believe it or not, some even use
both !

9. Expanded and Flexible Memory Protection:

Memory protection during assembly has been expanded. The
assembler now protects the ranges $001F-$02FF and $03D0-$07FF
as well as the symbol tables , the assembler itself, and DOS .

New user parameters have been added to allow you to selectively
override memory protection. You enter the first and last
address of any range you want to ON-protect in these two)
parameters. The beginning address of the range goes at $102 4 ~
and $1025 , low byte first ($D024 and $D025 in the high memory
version} . The end address of the un-protected range goes at
$1026-$1027 ($D026 -$0027} •

10 . . SE Directive

The .SE directive has been added , t6 allow re-definable
symbols . Symbols which are originally defined by the . SE
direct i ve may be r e-defined within the same assembly by
additional . SE lines. This directive allows a counter within
macro definitions, as shown in the file "EXAMPLE: .SE
DIRECTIVE ".

Labels defined with a .EQ directive, or by simply appearing in
the label field, cannot be re-defined.

11 . Assembly of Separate Phases :

The .PH and .EP directives are now available, to start and end
a phase . With these directives you can assemble a section of
code that is intended to be moved and exectued somewhere else,
withou t having to create a separate Target File. .PH <expr>
effectively sets the origin to <expr>, but keeps the target
address unchanged. When the .EP directive is encounterea, the
origin is reset to match the target address.

- 15 -

~)

0800- AD 03 90
0803- 60

9000- A9 08
9002- 60
9003-

0808- 00 90

SYMBOL TABLE

0808- ADDR

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090

START LOA DATA
RTS ·-------------------------
.PH $9000

PATCH LOA /ADDR
RTS

DATA .BS l
.EP ·-------------------------

ADDR .DA PATCH

9D03- DATA 9DOO- PATCH 0800- START

Notice that the object code column and the symbol table show
the code to be in different locations, but if you examine
memory you will find all the code together, starting at $0800
and running through $0809:

$800.809
0800 - AD 03 9D 60 A9 08 60 00
0808- 00 90

12. Dummy Sections:

we added .DUMMY and .ED directives to start and end a dummy
section. A dummy section assembles, but no object code bytes
are produced. Dummy sections are useful when specifying data
blocks, or when you want to run as assembly for syntax checking
without generating code •

• DUMMY and .ED are equivalent to the DSECT and DEND directives
in Apple 1 s ToolKit Assembler, with the exception that the dummy
origin is not automatically set to $0000. Any .OR directives
within a dummy section will only be effective that section:
.DUMMY saves the current origin, and .ED restores it.

0800- 34 12

1234- AD 00 08
1237-
1238-

0802- AD 35 12

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090

ADDR • DA LABEL ·-------------------------
LABEL
NEXT
AGAIN

.DUMMY

.OR ~1234
LOA ADDR
.BS 1
.BS 1
.ED

*-------------------------
LOA NEXT

If you include a .TF directive inside a dummy section, an
amazing and useful thing happens: the assembly listing is
written out to the target file! Be careful with the surprising
feature. If you have several .TF lines in a source program,
and some are in dummy sections, you may get some rather
unpredictable results.

- 16 -

13. Change to Relative-Branch Expressions:

We changed the way the relative branches are assembled, so that
••• in expressions is equal to the location of the opcode byte.
In Macro 1.0 and earlier versions, ••• equaled the address of
the offset byte, which was non-standard. However, even with
this correction, we do not recommend that you use "*+anything• ·v
or *-anything" address expressions in relative branches: it is ·
a dangerous practice that almost always leads eventually to
bugs. ·Use local labels instead.

14. Additional Option on .LIST Directive:

.LIST CON allows you to include those lines that are skipped
over by a .DO -- .FIN section in the assembly listing .

.LIST CON

.LIST COFF

Here is an example:

0800- EA

1000
1010
1020
1030
1040
1050

Show excluded lines
Omit excluded lines

.LIST

.oo 0
NOP
• ELSE
NOP
.FIN

CON
(FALSE)
(LISTED, BUT NOT ASSEMBLED)

(LISTED AND ASSEMBLED)

Without the .LIST CON, line 1020 would be omitted from the
listing. The default condition is .LIST COFF.

- 17 -

Brief History of S-C Assembler Versions

We have been working on the s-c Assemblers for over six years
now, and it is interesting to see the progress we have made.

Apr 78 began working on assembler
various pre-releases (first manual only 1 page!)

Aug 78 original tape version, $25
4-char labels
$1000-SlBFF

Jul 79 Disk Version 3.2, $35.

Jul 80 Disk Version 4.0, $55.
source code $95, first sold Oct 81
Paul Schlyter showed us how to move it

to language card RAM.
Don Taylor and Rip Toren showed us how

to use the Videx card.

Feb 82 Macro 1.0, $80.

Apr 83 Macro 1.1, $92,50
source code $100, first sold Apr 84

Nov 83 Macro 1.2 (un-official pre-release)

Nov 84 Macro 2.0, $100
65C02 and 65816 assembly
$1000-$37FF or $D000-$F7FF

Related products

Oct 80
Nov 80

Mar 81
Apr 81
May 81
Jan 83

Mar 83
May 83

started "Apple Assembly Line"
Rak-ware, Decision systems, and Lee Meador

disassemblers
Rak-Ware DISASM version 2.0
Rak-Ware XREF for S-C 4,0
Rak-Ware utilities for 4.0
Attempted to produce Apple /// version, but did not
ever finish the project.
Laumer Research Full screen Editor
S-C XREF

- 18 -

Cross Assemblers

Nov 80 6800 (4 . 0) Bob s-c
Oct 81 6809 (4.0) Chris Wiggs
Jun 82 6800 (Macro) Bob s-c
Jun 82 6809 (Macro) Bobby Deen
Jul 82 Z-80 (Macro) Bobby Deen
Sep 82 68000 (Macro) Bobby Deen
Dec 82 65C02 (Macro) Bob s-c
Dec 82 8048 (Macro) Bobby Deen
Jan 83 6805 (Macro) Bobby De en
Mar 83 8051 (Macro) Bobby De en
Mar 83 1802 (Macro) Bobby De en
May 83 PDPll (Macro) Bobby Deen
Jun 83 8085 (Macro) Bobby Deen
Nov 83 6301 (Macro) Bob s-c
Mar 84 Z-8 (Macro) Bobby Deen
Aug 84 1650 (Macro) Bob s-c
Aug 84 1670 (Macro) Bob s-c

Version 4.0 was translated into Japanese by the friendly folk
at ESD Laboratories in Tokyo. They published the Japanese
version under license agreement for several years.

Minimum Assembler, with MThe Fourth Leg of the Apple",
published by Dr. Ray Brinker. Dr. Brinker's book/disk
introduces the reader to assembly language, Forth, and other
fascinating subjects . Pluss, you get a working (albeit somewhat
stripped-down) assembler, a working Forth, and other useful
stuff. All for $50.

Synassembler, on Atari 400/800, converted from our Version 4.0
by steve Hales and published for several years by Synapse. Now
"out of print", as Synapse decided the market was too small.

An unofficial, bootleg copy turned up in the International
Apple Core disk-of-the-month series during 1983. This was a
slightly modified copy of my original tape version, which found
its way from Texas to California by way of Florida and Ontario
(Canada) .

F-S Macro Assembler, converted from our Macro 1.0 version by Y.
Lempereur at FunSoft Inc, and distributed by Stanton Products,
3710 Pacific Ave., Venice, CA 90291 for $50. Phone (213)
821-2425. Operates on any Atari with 48K RAM and a disk drive.
Jeff Stanton is selling these to readers of his latest book,
"Atari Graphics and Arcade Games".

Mainstay MacASM, also written by Y. Lempereur at FunSoft, on
the model of the s-c Macro Assembler, to operate in the
Macintosh . This is a full 68000 assembler, for $100 to $150 .
Available from s-c Software for $100 while supplies last.

- 19 -

